
MIGRATING

ARM
FROM

8/16-BIT TO 32-BIT

MICROCONTROLLER

Introduction

Provides and overview of ARM7

architecture.
02

01 Compare traditional 8/16bit cores

to ARM

03 Discuss the similarities between

8-bit/16-bit and ARM MCUs

Purpose

To Provide Information Outlining Migration

From 8-Bit/16-Bit Microcontroller
To A 32-Bit ARM Platform.

Objectives

ARM Archicture

3-Stage Pipeline With Branch Speculation.02

01 The STM32F4 Is Based On Armv7e-M Architecture.

03. Instruction Set

Thumb-1 i

Thumb-2ii

32-Bit Hardware Intergern Multiply With 32-Bit Or
64-Bit Results, Signed Or Unsigned.

iii

32-Bit Hardware Integer Divider (2-12 Cycles).iv

1 to 240 interrupts, plus NMI (Non-maskable Interrupt).04

12 Cycle Interrupt latency.05

Integrated sleep modes.06

Fetch

Decode

Execute

ARM Thumb

PCPC

PC-4

PC-8 PC-4

PC-2

Instruction Fetched From Memory Thumb Only: Thumb Instruction decompressed

To ARM instruction.

Instruction decoded.

Registers read from Register Bank, Shift and ALU

operations performed, Registers written back to

register bank.

3-Stage Instruction Pipeline

Fetch Decode Execute

Optimal Pipeline

In this example it takes 6 clock cycles to execute 6 instructions.
All operations are in registers (single cycle instructions).

Clock cycles per instruction (CPI)=1

Fetch Decode Execute

Fetch Decode Execute

Fetch Decode Execute

Fetch Decode

Fetch Decode Execute

Fetch Decode Execute

Fetch Decode Execute

ADD

CMP

AND

MOV

EOR

SUB

RSB

ORR

1 2 3 4 5 6 7 8

Cycle

Fetch

Branch Pipeline Example
- Branches break the pipeline

- Example in ARM state

Fetch Decode Execute

Fetch Decode

Fetch

Fetch Decode

Fetch Decode Execute

MOV 0x8FF4

X 0x8008

X 0x8004

SUB 0x8FFO

BL 0x8000

AND 0x8FF8

ADD 0x8FEC

1 2 3 4 5 6 7

Cycle

Fetch Decode Execute Linkret Adjust

Fetch

Typical 8/16 Bit Vs ARM

ARM Processor Modes

ARM has seven operating modes

Many 8/16-bit processors don’t implement different modes of operation

User: unprivileged mode under which most applications run.i

FIR: entered, when a high priority (fast) interrupt.ii

IRQ: general purpose interrupt handling.iii

Supervisor: protected mode for the operating system.iv

System: prevailed mode using same registers as user mode.v

Abort: used to handle memory access violations.vi

Undefined: used to handle undefined functions.vii

ARM (RISC)

Instruction pipeline: ARM7-> 3stage

ARM9 -> 5 stage

ARM11-> 9 stages

Multiple operating mode: User, FIQ, IRQ, Super-

visor, Abort, Undef and System.

More sophisticated register organization with

shadow registers for various modes.

8/16-bit (CISC)

No Instruction pipeline.

One operating mode.

Single Instruction Type.

Simpler register organization.

Multiple Instruction types: ARM and Thumb

mode.

ARM Instruction Set

All instruction are 32-bit long.01

Many instructions execute in single cycle.02

Most of the ARM instruction can be conditionally executed.03

Could be divided into six broad classes of instruction:04

Branch instructions.i

Data processing Instructions.ii

Status register transfer instructions.iii

Load and Store instructions.iv

Coprocessor instructions.v

Exception-generating instructions.vi

ARM7 Assembly

LOGICAL

-AND

-OR

-XOR

-Move Not

-Bit Clear

BRANCH

-Unconditional

-Conditional

-Branch and

Exchange.

-Branch with Link

and Exchange.

MOVE

-Not

-PSR to Register

-Register to PSR

-Immediate to

Register.

LOAD/STORE

-Word

-Byte

-Halfword

-Doubleword

-Multiple

PUSH/POP

-Push with link

-Pop and return

-Pop and return

 with exchange

ARITHMETIC

-Add.

-Subtract.

-Negate.

-Multiply.

-Compare.

ARM uses a 32-bit architecture with a subset of 16-bit instructions,
still using 32-bit data and registers.

01

Set of instructions re-coded into 16-bits.02

In Thumb state only the program code is 16-bit wide.03

Improve code desity by ~30%.i

After fetching the 16-bit instruction from memory, they are decompressed to

32-bit instruction before they are decoded and executed.
i

Saveing program memory space.ii

All operation are still 32-bit operation.ii

Thumb State

ARM Thumb Instruction Set

LOGICAL

SOFTWARE INTERRUPT(SWI)

Test : TST

AND : AND

OR : ORR

XOR : EOR

Bit clear : BIC

BRANCHING

PUSH (PUSH)

POP (POP)

-Branch (unconditional) : B

-Branch and Exchange : BX

-Branch with Link : BL

-Conditional (14 variants)

Registers onto stack (LR, too)

Registers from stack (PC, too)

ARITHMETIC

-Add : ADD, ADC (low/high,

immediate, to SP, w/ carry)

-Subtract : SUB, SBC

(Immediate W/Carry)

-Negate : NEG

-Multiply :MUL

-Compare : CMP, CMN

(low/ high, immediate, negative)

MOVE

MOV, MVN

- Immediate

-Low/ High

- Move Not

Word (immediate/register offset)

Byte (signed*, immediate/

register offset)

Halfword (signed*/immediate

register offset)

Conditional (14 variants)

Multiple

Relative (PC* or SP)

Address* (using PC or SP)

LOAD*/ STORE

SHIFT

LSL, LSR, ASR

Rotate(ROR)

Left/Right

Right

Arithmetic/right

Registers In Thumb State

The thumb state register set is a subset of the ARM state set. The programmer
 has direct access to :-

01

02 In thumb state, the higher registers (r8-r12) are not part of the standard register set.
The assembly language

programmer has limited access to them, but can use them for fast temporary

storage.

 Eight General Registers

The Program Counter

Stack Pointer

Link Register

Current Program Status Register

R0-R7

PC

LC

LR

CPSR

Interrupt Handler Consideration

8/16-BIT (CISC)

- Normally, only one interrupt “type”

- Limited or no interrupt priorization

- No change in code type to service ISRs

ARM (RISC)

• Fast Interrupt
• Interrupt Request
• Non-Vectored Interrupt

-Three types of interrupt

-Interrupt Service Routines must be

written in ARM mode.

-Detailed control over priority.

• FIQ always executed first
• IRQ priority levels (0-15)
• Default interrupts lowest priority

Vectored Interrupt Controll

ARM Processor.01

32 interrupts request inputs.02

16 IRQ interrupt can be auto-vectored.03

Single instruction vectoring to ISR.04

Dynamic software priority assignment.05

16 Non-vectored interrupts.06

Software Interrupts.07

FIQ- Fast interrupt.08

VIC-FIQ (Fast Interrupt) Details

FIQ have higher priority than IRQs01

FIQ vector is last vector table (Allow handler to run sequentially from

that address).

02

FIQ mode has 5 extra banked registers r8-r12 (interrupt must always

preserve non-banked registers).

03

Service firsti

FIQs disable IRQii

Is It Time To Move To ARM?

Small 48-pin and 64-pin QFN packages available.01

Prices competitive with 8 or 16-bit architectures.02

Low cost development tools are available.03

Microcontroller Users Want

Many customers are using 8/16-bit device today want :01

Low power for battery operated devices.02

Fast IO.03

Easy upgrade path with minimal relearning.i

Single chip solution:ii

• On chip flash

• Timers, PWM, UART, SPI, I2C

• ADC

• Predicable, deterministic performance

• No cache

• Same performance between flash and memory

High performance, good quality and high reliable flash memory.04

Hence, ARM is suitable choice in those scenarios.05

Typical 8/16 Bit Vs ARM

Parameters

GPIO

U(S)ART

SPI

I2C

16-bit timer

ADC

RTC

Maximum Clock speed

PWM

Interrupt pins

Others

ATMEGA328p

23

1

1

1

1

1 8-channels

0

20MHZ

6

2

-

STM32F103C8T6

37

3

2

2

3

2-9 Channels

1

72MHz

16

16

USB, CAN, DMA 5V tolarence IO

This report is brought to you by EmbeddedExpertIO. EmbeddedExpertIO is an online embedded systems school focused

on professional embedded systems software programming.

If you are new to embedded systems programming our community provides step-by-step courses that will take you

from "blinky" to "build your own Rtos".

If you are an embedded systems developer who wants to specialize in some specific aspect of embedded systems

programming, We also provide a wide range of specialization courses to help you master different aspects of
embedded firmware development.
We look forward to welcoming you to EmbeddedExpertIO.
Visit us at : https://study.embeddedexpert.io/

Thank You

